
GPipe: Efficient Training of Giant Neural Networks using Pipeline Parallelism

Yanping Huang
Google Brain

huangyp@google.com

Youlong Cheng
Google Brain

ylc@google.com

Dehao Chen
Google Brain

dehao@google.com

HyoukJoong Lee
Google Brain

hyouklee@google.com

Jiquan Ngiam
Google Brain

jngiam@google.com

Quoc V. Le
Google Brain

qvl@google.com

Zhifeng Chen
Google Brain

zhifengc@google.com

Abstract

GPipe is a scalable pipeline parallelism library that en-
ables learning of giant deep neural networks. It partitions
network layers across accelerators and pipelines execution
to achieve high hardware utilization. It leverages recompu-
tation to minimize activation memory usage. For example,
using partitions over 8 accelerators, it is able to train net-
works that are 25× larger, demonstrating its scalability. It
also guarantees that the computed gradients remain con-
sistent regardless of the number of partitions. It achieves
an almost linear speedup without any changes in the model
parameters: when using 4× more accelerators, training the
same model is up to 3.5× faster. We train a 557 million
parameters AmoebaNet model and achieve a new state-of-
the-art 84.3% top-1 / 97.0% top-5 accuracy on ImageNet
2012 dataset. Finally, we use this learned model to finetune
multiple popular image classification datasets and obtain
competitive results, including pushing the CIFAR-10 accu-
racy to 99% and CIFAR-100 accuracy to 91.3%.

1. Introduction
Deep neural networks have advanced many machine

learning tasks, including speech recognition [11], visual
recognition [57, 45], and language processing [17]. Their
successes have been largely due to the model’s capacity to
learn complex features from vast amounts of data. Increas-
ing the size of models has been shown to dramatically im-
prove task performance. One of the most challenging and
popular machine learning tasks is to solve the ImageNet vi-
sual recognition challenge [16], where researchers compete
to create the most accurate model that classifies given im-

Figure 1: Strong correlation between top-1 accuracy on Im-
ageNet 2012 validation dataset and model size for represen-
tative state-of-the-art image classification models in recent
years [49, 50, 23, 54, 24, 57, 45]. Red dot shows 84.3% top-
1 accuracy for a giant AmoebaNet model trained by GPipe.

ages in the dataset. The winner of 2014 ImageNet challenge
was GoogleNet [49], which achieved 74.8% top-1 accuracy
with 4 million parameters. The winner of 2017 ImageNet
challenge went to Squeeze-and-Excitation Networks [24],
which achieved 82.7% top-1 accuracy with 145.8 million
parameters. This corresponds to more than a 36 times in-
crease in the number of parameters in the best visual recog-
nition models, as shown in Figure 1. However, memory
available on accelerators such as GPUs has only increased
from 12 GB in 2014 (Nvidia K40) to 32 GB in 2018 (Nvidia
V100). Hence, training even bigger neural networks can be

1

ar
X

iv
:1

81
1.

06
96

5v
4

 [
cs

.C
V

]
 1

2
D

ec
 2

01
8

challenging when faced with the accelerator memory limits.
There are increasing needs for scaling up deep neural

networks. Modern machine learning datasets are growing
faster than ever in terms of dataset size and quality. Im-
age classification datasets such as OpenImages, JFT [47],
and hashtagged Instagram [35] contain hundreds of millions
of high definition images. Higher image resolutions pro-
vide greater details of the object but consume more mem-
ory. This leads to a contention between memory allocated
to model parameters and network activations - reinforcing
a need for breaking the accelerator memory limit. The
larger volume of training data helps reduce over-fitting and
facilitates deep neural networks to grow bigger. Mean-
while, the emergence of deep learning super computers such
as Nvidia DGX and Google TPU enables efficient paral-
lelism by providing fast interconnections between accel-
erators. The memory restrictions have limited the scales
of deep neural networks and confine researchers to smaller
scale problems with fewer parameters. For example, while
the average ImageNet resolution is 469 × 387, it has been
shown that increasing input image size can lead to higher
accuracy [23]. However, most current models are engi-
neered to only use input image size 299× 299 or 331× 331
to fit within accelerator memory limits. Our work focuses
on removing this limiting factor of scaling up deep neural
networks.

To overcome the memory limitation, we propose to use
pipeline parallelism to scale up deep neural network train-
ing. We design and implement GPipe, a distributed machine
learning library that uses synchronous mini-batch gradient
descent for training. GPipe partitions a model across dif-
ferent accelerators and automatically splits a mini-batch of
training examples into smaller micro-batches. By pipelin-
ing the execution across micro-batches, accelerators can
operate in parallel. In addition, GPipe automatically re-
computes the forward activations during the backpropaga-
tion to further reduce the memory consumption. Gradients
are consistently accumulated across micro-batches, so that
the number of partitions does not affect the model quality.
Therefore, GPipe allows researchers to easily deploy more
accelerators to train larger models, and also to scale the per-
formance without tuning hyperparameters.

GPipe maximizes memory allocation for model parame-
ters. In experiments, we show that GPipe can support mod-
els up to 25 times larger using 8 accelerators without reduc-
ing the batch size. The implementation of GPipe is very
efficient: with 4 times more accelerators we can achieve a
3.5 times speedup for training giant neural networks. GPipe
can be combined with data parallelism [51] to scale training
in a complementary way.

Finally, we demonstrate the empirical power of giant
neural networks on image classification tasks. We increase
the number of parameters for a AmoebaNet model to 557

millions and train it with input image size of 480 × 480
on ImageNet ILSVRC 2012 dataset. Our scaled-up Amoe-
baNet model attains 84.3% top-1 / 97.0% top-5 validation
accuracy. To the best of our knowledge, it outperforms all
other models trained from scratch on ImageNet dataset 1.
Furthermore, we use this learned giant model as an initial-
ization for training seven datasets that span a wide range
of tasks from general recognition to fine-grained classifi-
cation. We find that giant models perform well on those
datasets, obtaining results that are competitive to state-of-
the-art models. For example, we push the CIFAR-10 accu-
racy to 99% and CIFAR-100 accuracy to 91.3%.

In summary, this paper introduces GPipe, a scalable
model parallelism library for training giant deep learning
models with the following key contributions:
• It supports models up to 25 times using 8 accelerators due

to recomputation and model parallelism.
• It achieves up to 3.5 times speedup with four times more

accelerators using pipelining in our experiments.
• It guarantees consistent training regardless of the number

of partitions due to synchronous gradient descent.
• It advances the performance of visual recognition tasks

on multiple datasets, including pushing ImageNet top-5
accuracy to 97.0%, CIFAR-10 accuracy to 99.0%, and
CIFAR-100 accuracy to 91.3%.

2. Related Work
Deep neural networks typically consist of a sequence

of layers. During training, a neural network first uses the
current model parameters to compute predictions from in-
put mini-batches in the forward pass. Then, the gradients
are computed by backpropagating prediction errors (Fig-
ure 2a). Computing gradients in each intermediate layer
requires both gradients from upper layers and the cached
output activations from the forward pass. Thus, activation
memory requirements typically grow in proportion to the
number of layers, leaving less space for storing model pa-
rameters.

Various efforts have been studied to allow accelerators
to train bigger models. They come with different trade-offs
between memory, performance, and model quality. One
common method is to recompute the forward pass activa-
tions during backpropagation [21, 8], which significantly
reduces memory required to cache activations. However,
this method is still limited by the size of a single accelerator
memory. Another approach is to swap memory between ac-
celerators and the host [15]. However, this approach often
slows down training because of the limited communication
bandwidths between the host and accelerators.

Standard parallelism techniques including data paral-
lelism and model parallelism provide orthogonal ways to

1Mahajan et al.’s model [35] achieved 85.4% top-1 accuracy but it was
pretrained on non public external data (Instagram images with hashtags).

use more accelerators for training. Data parallelism [51] ef-
fectively scales up the global mini-batch size. It lets each
machine compute the gradient on a mini-batch of training
examples. Each machine either synchronously or asyn-
chronously updates the model parameters at the end of each
training step [4, 34]. Data parallelism is widely used due to
its simplicity and effectiveness. Because the batch size is
proportional to the number of machines and different batch
sizes often require different hyperparameters, scaling deep
net training purely by data parallelism has became more
challenging.

Model parallelism is a complementary technique to data
parallelism. A naive strategy is to divide the computation
into partitions and assign different partitions to different ac-
celerators [30, 33]. This approach is straightforward when
networks consist mainly of parallel branches. However,
many deep learning models stack layers sequentially, pre-
senting a challenge to parallelize computation efficiently. A
naive partition strategy may result in only one accelerator
active during computation, significantly underutilizing ac-
celerator compute capacity (Figure 2b).

Pipelining is a common parallel algorithm [32] that inte-
grates model and data parallelism. Petrowski et al. explored
accelerating training neural networks via pipelining on early
parallel machines [43]. Chen et al. used pipeline computa-
tion to approximate expensive backpropagation [9]. Wu et
al. [53] parallelized computation of stacked recurrent neu-
ral networks on GPUs in the pipelining way. Recently,
PipeDream [22] introduced a pipelining approach to reduce
communication overhead for synchronized training using
parameter servers [34]. However, it suffered from incon-
sistency and staleness issues in the backward pass, which
could lead to unstable and poor model quality. PipeDream
maintained multiple versions of model parameters on the
accelerator to address the consistency issue. These con-
straints could prevent PipeDream from scaling up to bigger
models. Similarly, DualPipe [6] optimized pipeline perfor-
mance by assuming that there exists a robust way to predict
future model parameters for back-propagation. Unlike these
approaches, GPipe does not have any inconsistency or stal-
eness issue. It integrates recomputation with pipeline par-
allelism to maximize memory and compute utilization. It
offers effective and efficient synchronous training of large
scale deep neural networks.

3. Methods

This section describes main design features of GPipe.
This library is implemented using the TensorFlow [1]
framework. The core algorithm can be implemented using
other frameworks [27, 7, 40] as well. It will be open sourced
in the coming months.

3.1. Interface

The caller of the GPipe interface specifies a sequential
list of L layers. Each layer specifies its model parameters
wi, its stateless forward computation function fi, and an
optional cost estimation function ci that estimates the static
computation cost of i-th layer given shapes of all inputs to
the layer. Neighboring layers can be combined into a com-
posite layer. For example, the composite layer pk may be
composed of consecutive layers from the i-th layer to the
j-th layer. In this case, pk’s model parameters would be the
union of wi, wi+1, . . . , wj and its forward function would
be Fk = fj ◦ . . . ◦ fi+1 ◦ fi. The corresponding back-
propagation function Bk is derived from Fk using Tensor-
Flow’s automatic symbolic differentiation mechanism. Its
cost estimator is constructed based on ci, ci+1, . . . , cj .

3.2. Algorithm

After users defined their network layers in terms of
model parameter wi, cost estimation function ci and for-
ward computation function fi, GPipe partitions the network
into K composite layers and places k-th composite layer
onto k-th accelerator, where K is the number of partitions
users specified. Communication primitives are automati-
cally inserted by GPipe at the partition boundaries to allow
data exchanging between neighboring partitions. The par-
titioning algorithm is heuristic-based. It simply minimizes
the variance of each composite layer’s estimated cost. We
expect that better partitioning algorithms can potentially im-
prove the performance of GPipe.

During training, GPipe first divides a mini-batch of size
N into T micro-batches at the first layer. Each micro-batch
contains N

T examples. For instance, an image input tensor
with shape [N , H , W , C] is reshaped into [T , N

T , H , W ,
C]. During the forward pass (Figure 2c), the (k + 1)-th ac-
celerator starts to compute Fk+1,t as soon as it finishes the
(t− 1)-th micro-batch and receives inputs from Fk,t. At the
same time, the k-th accelerator can start to compute Fk,t+1.
Each accelerator repeats this process T times to finish the
forward pass of the whole mini-batch. There are still up to
O(K) idle time per accelerator, which we refer to as bub-
ble overhead as depicted in Figure 2c. This bubble time is
O(K−1

T+K−1) and amortized by the number of micro-batches
T . The last accelerator is also responsible for concatenating
the outputs across micro-steps and computing the final loss.

During the backward pass, gradients for each micro-
batch are computed based on the same model parameters
as the forward pass. Gradients are applied to update model
parameters across accelerators only at the end of each mini-
batch. Therefore, GPipe maintains the same synchronous
nature of gradient descent, independent of the number of
partitions. This is important because deep learning train-
ing is sensitive to hyperparameters such as learning rate
schedules and dropout probabilities. Such guarantee frees

(b)

(a) (c)

Figure 2: (a) An example neural network with sequential layers is partitioned across four accelerators. Fk is the composite
forward computation function of k-th partition. Bk is the corresponding backpropagation function. Bk depends on both
Bk+1 from upper layer and the intermediate activations of Fk. (b) The naive model parallelism strategy leads to severe
under-utilization due to the sequential nature of the network. Only one accelerator is active at a time. (c) Pipeline parallelism
divides the input mini-batch into smaller micro-batches. It enables different accelerators to work on different micro-batches at
the same time. Fk,t and Bk,t refer to forward and backward computation of the t-th micro-batch on k-th partition. Gradients
are applied synchronously at the end of each mini-batch.

researchers from the time consuming process of re-tuning
hyperparameters.

If batch normalization [25] is used in the network, the
sufficient statistics of inputs during training are computed
over each micro-batch, and over replicas if necessary [41].
We also track the moving average of the sufficient statistics
using the entire mini-batch for use during evaluation.

3.3. Optimization

The computation of the backward pass bi(x) at layer i re-
quires both the upper layer gradients bi+1(x) and cached ac-
tivations fi(x). Therefore, the total cached activations need
O(N×L) space without optimization, whereN is the mini-
batch size and L is the number of layers in the network. In
order to reduce activation memory requirements, GPipe re-
computes the forward passes. Each accelerator only stores
output activations at the partition boundaries, rather than ac-
tivations of all intermediate layers within the partition. Dur-
ing the backward pass, the k-th accelerator recomputes the
composite forward function Fk and requires only the cache
activations at the partition boundaries. As a result, the size
of peak activation memory reduces toO(N+ L

K×
N
T) where

N
T is the micro batch size and L

K is the number of layers in
one partition.

As depicted in Figure 2c, the aggregation of the loss dur-
ing the forward pass introduces a bubble of idleness be-

tween the forward and backward passes. The bubble is
amortized over the number of micro-steps T . In our exper-
iments, we found that the bubble overhead was quite small.
This is partly because recomputation during the backward
pass can be scheduled earlier without waiting for gradients
from earlier layers. Figure 2c assumes partitions are evenly
balanced. However, memory requirements and computa-
tion flops at different layers are often quite imbalanced. For
example, the number of convolution filters doubles every
time there is a reduction in spatial dimensions of the ac-
tivation tensors for many modern image models, such as
ResNet, Inception, NasNets, and AmoebaNets. The ac-
tivation memory footprint per layer decreases linearly at
later layers while the number model parameter per layer
increases quadratically. Therefore, imperfect partitioning
algorithms will lead to load imbalance when partitioning
those layers. Better partitioning algorithms can potentially
improve the performance over our heuristic approach.

4. Results

This section provides detailed analysis of scalability and
performance of GPipe. We evaluated ResNet and Amoe-
baNet in the experiments. ResNet is a representative neu-
ral network for image classification. AmoebaNet was the
previous state-of-the-art image model on ImageNet. Both

networks allowed us to increase the model size by changing
the number of layers or the number of filters. We ran the
experiments on TPU-v2s, each of which has 8 accelerator
cores and 64 GB memory (8 GB per accelerator).

4.1. Memory

GPipe uses recomputation and pipeline parallelism for
better memory utilization. We expect that both methods can
enable bigger models, which we verified experimentally in
this section. To do this, we fixed the input image size at
224 × 224 and the mini-batch size at 128. We studied the
effect of each method on the maximum AmoebaNet model
size that would fit with k accelerators, k ∈ {1, 2, 4, 8}. An
AmoebaNet model consists of a sequence of two repeated
layer modules called normal cell and reduction cell. Nor-
mal cell reserves input activation size. Reduction cell re-
duces the spatial dimension of activation but increases the
activation filter size. The capacity of an AmoebaNet is con-
figured by two hyperparameters, L and F . L defines the
number of normal cells stacked between reduction cells and
F specifies the number of filters in the first normal cell. We
increased L and F until we reached the limits of accelera-
tor memory. We then compared training a model with and
without GPipe on a single accelerator to understand the ben-
efits that GPipe introduces. We also partitioned AmoebaNet
across different number of accelerators to study the payoff
of pipeline parallelism. We reported the maximum model
size, total peak activation memory, and total peak model
parameters memory across accelerators under different sce-
narios in Table 1.

First, we found that GPipe enabled 3.8 times bigger
models on a single accelerator. Without recomputation,
a single accelerator can train up to 82 million model pa-
rameters due to memory limits. Recomputation and mini-
batch splitting reduced activation memory from 6.26GB to
3.46GB, enabling 318 million parameters on a single ac-
celerator. For each model parameter, GPipe consumed 12
bytes, i.e., the parameter itself, its moving average and mo-
mentum each consumes one single precision float.

Second, we saw that with pipeline parallelism the max-
imum model size was proportional to the number of parti-
tions, as expected. GPipe was capable of enabling Amoe-
baNet with 1.8 billion parameters across 8 accelerators, a
5.6 times increase compared to that on a single accelera-
tor. In total, GPipe supported models that are 25 times big-
ger using 8 accelerators in this experiment. The maximum
model size was not a perfect linear function of the num-
ber of partitions because of the non-uniform distribution of
model parameters over layers in AmoebaNet. This made it
challenging to distribute layers evenly across multiple ac-
celerators. With improvements from the partitioning algo-
rithms, GPipe would be capable of allocating even larger
models.

4.2. Performance

In this section, we evaluated various factors that trade-
off GPipe performance for better memory utilization. For
example, recomputation of forward passes reduces activa-
tion memory but inevitably introduces computation over-
head. Pipeline parallelism partitions networks across accel-
erators, but it can have overheads such as imbalanced work-
load and bubbles of idleness. It also requires setup time to
divide and reshape the inputs. In our experiments, we mea-
sured the effects of pipeline parallelism and recomputation
on the model throughput of ResNet-101 and AmoebaNet-D
(4, 512). We fixed the image size at 224×224. We adjusted
the mini-batch size to maximize the throughput. To isolate
the effects of pipeline parallelism, we used k accelerators to
train a model with k partitions. Since training AmoebaNet-
D (4, 512) requires at least two accelerators, we reported the
speedup with respect to no pipelining case with two parti-
tions in Figure 3a. We reported speedup of ResNet-101 with
respect to the sequential case without recomputation in Fig-
ure 3b. To assess the overhead cost, we carefully studied
the trace files from ResNet-101 runs to identify key factors
that affect performance. We also examined how the effects
of these factors change with the number of partitions in Fig-
ure 4a and 4b.

We observed that the benefits of pipeline parallelism out-
weigh the performance overhead introduced. We saw an
almost linear speed up in training AmoebaNet-D (4, 512).
Compared to the naive approach with two partitions, dis-
tributing AmoebaNet-D (4, 512) across four times more ac-
celerators achieved 3.5 times speedup. ResNet-101 is a rel-
atively smaller model that doesn’t need model parallelism
for training. But it allowed us to analyze system perfor-
mance easily. The relative throughput of ResNet-101 us-
ing GPipe with one partition is 0.8. Recomputation thus
introduced about 25% overhead. As ResNet-101 was dis-
tributed across more accelerators, performance increased. It
achieved about 3 times speedup with 8 accelerators. In both
examples, GPipe provided a way to increase throughput us-
ing more accelerators, complementary to the traditional data
parallelism approach.

To study opportunities for future performance improve-
ments, we identified key factors that would affect GPipe
performance. We measured the times spent on different ac-
tivities listed in Figure 4a. We showed the distributions of
these times for ResNet-101 with 2 and 4 partitions in Fig-
ure 4a and 4b, respectively. We found that recomputation
time was the main contributor to GPipe overhead, taking
up to 23% of the total step time. Another source of over-
head was load imbalance. With two partitions, it was only
3.2%, but with four partitions, it rose up to 10.9% over-
head. It is increasingly difficult for load balancing with
more partitions in the network. Thus finding a good par-
titioning algorithm can help reduce this overhead in gen-

Naive-1 Pipeline-1 Pipeline-2 Pipeline-4 Pipeline-8

AmoebaNet-D (L, F) (6, 208) (6, 416) (6, 544) (12, 544) (24, 512)
of Model Parameters 82M 318M 542M 1.05B 1.8B
Total Peak Model Parameter Memory 1.05GB 3.8GB 6.45GB 12.53GB 24.62GB
Total Peak Activation Memory 6.26GB 3.46GB 8.11GB 15.21GB 26.24GB

Table 1: Maximum model size of AmoebaNet supported by GPipe under different scenarios. Naive-1 refers to the sequential
version without GPipe. Pipeline-k means k partitions with GPipe using k accelerators. L and F control the number of layers
and the number of filters of AmoebaNet, respectively. We recorded maximum model size by increasing L and F until we
reached the limits of accelerator memory in each scenario. Input image size was 224×224 and the batch size was 128. GPipe
divided the mini-batch into 16 micro-batches. It supported up to 1.8 billion parameters with 8 accelerators. Total peak model
parameter memory and activation memory across all accelerators are also shown.

(a) (b)

Figure 3: (a): Performance of AmoebaNet-D (4, 512) under different scenarios. This model could not fit into one acceler-
ator. It achieved 3.5 times speedup comparing to the baseline case naive-2: naive model parallelism with 2 partitions. (b):
Performance of ResNet-101 under different scenarios. Pipeline-k means k partitions with GPipe using k accelerators. The
baseline naive-1 refers to the sequential version without GPipe. The image size for both models was fixed at 224×224. Note
that ResNet-101 is a small model that won’t be beneficial from any model parallelism. But it allowed us to analyze system
performance and identify overheads easily.

(a) Two Partitions (b) Four Partitions

Figure 4: Time step breakdowns from ResNet-101 runs with 2 (a) and 4 (b) partitions, respectively. We analyzed the trace
files and measured the times spent on different categories. Setup overhead measured the time to divide and reshape the inputs
for pipelining. Bubble overhead measured the idle time between forward and backward passes. Load imbalance measured
the waiting time for the next mirco-batch due to imbalanced partition. Recompute accounted for the recomputation time
during back pass. Weight update measured the time for applying gradients.

eral. The theoretical bubble overhead is O(K−1
T+K−1) where

K is the number of partitions and T is the number of micro-
batches in each mini-batch. The observed bubble overhead
was slightly lower than the theoretical value partly because
recomputation was scheduled early to overlap with the bub-
ble. Weight update time for gradients aggregation at the end
of pipeline was also small thanks to high-speed interconnec-
tions between the accelerators.

4.3. Model quality

4.3.1 Consistent Training

GPipe performs synchronous training over the micro-
batches. In this section, we verified the hypothesis that the
end-to-end convergence accuracy using GPipe is the same
within statistical errors, regardless of the number of parti-
tions. We trained AmoebaNet-D (2, 128) several times for
35 epochs and measured the final validation accuracy on
ImageNet. We chose AmoebaNet-D (2, 128) since it was
the winning image model by training cost in the DAWN-
Bench competition [12]. We adopted the same hyperparam-
eters and training procedure reported in DAWNBench.2 As
a baseline, we trained AmoebaNet-D (2, 128) 5 times using
the official open source implementation and computed the
mean and standard deviation of the final accuracy. Using the
same hyperpameters and training procedures, we trained the
same network using GPipe with 1, 2, 4 and 8 partitions. We
found that the resulting accuracy fell within two standard
deviations from the mean, as expected.

4.3.2 Scaling up Giant Models

We verified the hypothesis that scaling up existing neu-
ral networks can achieve even better model quality. As
a proof of concept, we trained an AmoebaNet-B (6, 512)
with 557 million model parameters and input image size of
480× 480 on the ImageNet ILSVRC-2012 dataset. We fol-
lowed the same hyperparameters and input pre-processings
as described in [45] to train AmoebaNet-B (6, 512). We
employed the RMSProp optimizer with a decay of 0.9 and
ε = 0.1, L2 regularization λ = 4 × 10−5, label smoothing
coefficiency 0.1 and an auxiliary head with weight 0.4. We
applied the same drop-path schedule to intermediate lay-
ers as in NasNet [57], and dropout to the final layer with
probability 0.5. We used a learning rate schedule that de-
cays every 3 epochs at a rate of 0.97 with an initial learn-
ing rate of 0.00125 times the batch size. The network was
divided into 4 partitions, and we performed training using
both model and data parallelism. We adopted mixed preci-
sion training [37] where activations are represented in half
precision. Unlike other mixed precision training strategies,

2https://github.com/stanford-futuredata/
dawn-bench-entries/blob/master/ImageNet/train/
google_amoeba_net_d_tpu_tensorflow18.json

we didn’t scale the loss values thanks to the wide dynamic
range of bfloat16 on TPUs. We used ImageNet ILSVRC-
2012 dataset for training and reported the validation accu-
racy in table 2. This giant model reached 84.3% top-1 /
97.0% top-5 validation accuracy with single-crop.

4.3.3 Transfer Learning

Large neural networks are not only applicable to datasets
like ImageNet, but also relevant for other datasets through
transfer learning [44, 19, 46]. One successful approach to
transfer learning is to use ImageNet pre-trained models as
initialization for training on a target dataset. In this section,
we will evaluate the transfer learning performance for the
best giant model found in Section 4.3.2 that achieved 84.3%
top-1 accuracy on ImageNet.

We ran transfer learning experiments on the following
datasets: CIFAR-10, CIFAR-100 [31], Birdsnap [2], Stan-
ford Cars [29], FGVC Aircraft [36], Oxford-IIIT Pets [39],
and Food-101 [3]. This spanned a range of tasks from gen-
eral object recognition to fine-grained classification.

We trained a AmoebaNet-B (6, 512) model for each of
these datasets. We changed the number of output units in
the last softmax classification layer to the number of classes
in the target dataset. This softmax layer was initialized ran-
domly, while all other layers were initialized with the best
parameters trained on ImageNet. We selected the learn-
ing rate and L2 weight regularization parameters for each
dataset on a hold-out subset of training dataset. For other
hyperparameters we used the same ones as in ImageNet
training. We adopted image pre-processing procedure that
is widely used for training CIFAR datasets. In all our trans-
fer learning experiments, input images to the network dur-
ing training were resized to 480× 480, horizontally flipped
randomly and augmented using cutout [18]. We trained the
models for 20, 000 steps using stochastic gradient descent
with momentum. Each mini-batch contained 256 examples.
We reported the averaged single-crop accuracy on test sets
across 5 fine-tuning runs for each dataset.

We found that our giant models performed well on the
target datasets, obtaining results that were competitive to
state-of-the-art models in Table 3. For example, they re-
duced CIFAR-10 error rate to 1% and CIFAR-100 error rate
to 8.7%. These results corroborated Kornblith et al. [28]
findings that ImageNet performance correlated well with
transfer learning performance.

5. Discussion
Our work validates the hypothesis that bigger models

and more computation would lead to higher model quality.
This hypothesis is also supported by past advances in vi-
sual recognition tasks shown in Figure 1 and the recent pro-
gresses in other fields such as BigGAN [5] and BERT[17].

https://github.com/stanford-futuredata/dawn-bench-entries/blob/master/ImageNet/train/google_amoeba_net_d_tpu_tensorflow18.json
https://github.com/stanford-futuredata/dawn-bench-entries/blob/master/ImageNet/train/google_amoeba_net_d_tpu_tensorflow18.json
https://github.com/stanford-futuredata/dawn-bench-entries/blob/master/ImageNet/train/google_amoeba_net_d_tpu_tensorflow18.json

Model Image Size # Parameters Top-1 Accuracy (%) top-5 Accuracy (%)

Incep-ResNet V2[48] 299× 299 55.8M 80.4 95.3
ResNeXt-101 [54] 299× 299 83.6M 80.9 95.6
PolyNet[56] 331× 331 92.0M 81.3 95.8
Dual-Path-Net-131[10] 320× 320 79.5M 81.5 95.8
SENet∗ [24] 320× 320 146M 82.7 96.2
AmoebaNet-C (6, 228)[13] 331× 331 155.3M 83.5 96.5
AmoebaNet-B (6, 512) 480× 480 557M 84.3 97.0

Table 2: Single-model, single-crop classification accuracy for AmoebaNet-B (6, 512) compared to other published state-of-
the-art models on ImageNet ILSVRC 2012 validation dataset. Data in the this table suggested that better model quality might
be obtained by higher model capacity (# of parameters) and more computation (larger input image size). Note that Mahajan
et al.’s model [35] achieved 85.4% top-1 accuracy but it was pretrained on non-public external data (Instagram images with
hashtags). *Hu et al. reported 2.25% classification error using an ensemble of models with multiple crops on ImageNet 2017
test dataset, which is different from the ImageNet 2012 validation dataset in this table.

Dataset # Training Examples # Test Examples # Classes Our Model Accuracy (%) Previously Reported Result (%)

CIFAR-10 50,000 10,000 10 99.0 98.5 [13]
CIFAR-100 50,000 10,000 100 91.3 89.3 [13]
Stanford Cars 8,144 8,041 196 94.6 94.8∗ [13]
Oxford-IIIT Pets 3,680 3,369 37 95.9 93.8∗ [42]
Food-101 75,750 25,250 101 93.0 90.4∗ [14]
FGVC Aircraft 6,667 3,333 100 92.7 92.9∗ [55]
Birdsnap 47,386 2,443 500 83.6 80.2∗ [52]

Table 3: Transfer learning results using AmoebaNet-B (6, 512) initialized with the best ImageNet model, using an input
image size of 480× 480 and single crop at test time. Our results were averaged across 5 fine-tuning runs. Baseline results for
CIFAR-10 CIFAR-100, and Stanford Cars from Cubuk et al. [13] were directly trained from scratch. For all other datasets,
the baselines used some form of ImageNet pre-training. *For some datasets, Ngiam et al. [38] achieved better results by
pre-training with data from a large private dataset (JFT-300M).

Those results suggest that accuracy improvements of ma-
chine learning tasks may be obtained by further increases
in the scale of neural networks beyond the limits of acceler-
ator memory. Moreover, the availability of bigger datasets
such as JFT-300M [47] and hashtagged Instragram [35] also
reduces risks of over-fitting and encourages giant networks
with higher capacity.

GPipe supports models up to 2-billion parameters with
8 accelerators in our experiments, inviting future research
on searching efficient network architectures with billions of
parameters. As a proof of concept, we only scaled up the
capacity of AmoebaNet to 557-million parameters by dou-
bling the number of filters in our experiments. It doesn’t
mean that it’s the most effective way to grow the model
size. There might exist better ways for model augmenta-
tion like increasing the number of layers or employing more
branches of transformations.

GPipe allows us to revisit some of choices in network
architecture design that might be made due to limited accel-
erator memory. For example, one of design choices of ex-

isting image classification models is to aggressively reduce
the spatial dimensions of inputs at the first few layers. Em-
ploying convolution or pooling layers with non-unity stride
values at the beginning greatly reduces the activation mem-
ory requirement. Some lower level input features might be
omitted because of the aggressive early reductions. We ver-
ified this hypothesis by running a control experiment that
compared aggressive reduction with delayed reduction. We
reduced the stride value of the first convolution layer and
increased the stride value at the last convolution layer on
AmoebaNet-D (2, 256). As a result, the activation memory
footprint increased four times but the model size stayed the
same. This change improved the ImageNet top-1 accuracy
of the network from 78.1% to 82.7%.

GPipe can scale training by employing even more accel-
erators without changes in the hyperparameters. Therefore,
it can be combined with data parallelism to scale neural
network training using even more accelerators in a comple-
mentary way. Pure data parallelism with stochastic gradient
descent runs into inferior model generalization issues when

the size of the global mini-batch is extremely large. Signifi-
cant re-tuning and optimization is required to train on Ima-
geNet without loss of accuracy when the global mini-batch
size is greater than 8k [20, 26].

GPipe enables pipeline parallelism for any neural net-
works that consist of sequence of layers. It can be further
applied to more deep learning tasks such as object detec-
tion, image segmentation, and natural language processing.
The training efficiency of GPipe can be further improved by
better graph partition algorithms.

6. Conclusion

In this work, we introduce GPipe, a scalable model par-
allelism library that addresses the memory bottleneck for gi-
ant neural networks. It allows researchers to explore deeper
and more complex deep learning models. For example,
GPipe supports models up to 25 times larger with 8 ac-
celerators, demonstrating its scalability. Moreover, it can
achieve a 3.5 times speedup with 4 times more accelera-
tors without tuning. In all cases, it converges to the same
accuracy as the sequential version without any changes to
the model hyperparameters. Furthermore, we demonstrate
the power of our framework by training a giant AmoebaNet
model that achieves 84.3% top-1 / 97.0% top-5 ImageNet
validation accuracy, 99% CIFAR-10 accuracy, and 91.3%
CIFAR-100 accuracy.

Acknowledgments

We wish to thank Esteban Real, Alok Aggarwal, Xiao-
dan Song, Naveen Kumar, Mark Heffernan, Rajat Monga,
Megan Kacholia, Samy Bengio, and Jeff Dean for their sup-
port and valuable input; Patrick Nguyen, Xiaoqiang Zheng,
Yonghui Wu, Noam Shazeer, Barret Zoph, Ekin Cubuk,
Tianqi Chen, and Vijay Vasudevan for helpful discussions
and inspirations; and the larger Google Brain team.

References
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,

M. Devin, S. Ghemawat, G. Irving, M. Isard, et al. Tensor-
flow: a system for large-scale machine learning. In OSDI,
volume 16, pages 265–283, 2016. 3

[2] T. Berg, J. Liu, S. W. Lee, M. L. Alexander, D. W. Ja-
cobs, and P. N. Belhumeur. Birdsnap: Large-scale fine-
grained visual categorization of birds. In IEEE Conference
on Computer Vision and Pattern Recognition, pages 2019–
2026, 2014. 7

[3] L. Bossard, M. Guillaumin, and L. J. V. Gool. Food-101 -
mining discriminative components with random forests. In
D. J. Fleet, T. Pajdla, B. Schiele, and T. Tuytelaars, editors,
ECCV 2014, volume 8694 of Lecture Notes in Computer Sci-
ence, pages 446–461. Springer, 2014. 7

[4] L. Bottou. Large-scale machine learning with stochastic gra-
dient descent. In Proceedings of COMPSTAT’2010, pages
177–186. Springer, 2010. 3

[5] A. Brock, J. Donahue, and K. Simonyan. Large scale gan
training for high fidelity natural image synthesis. arXiv
preprint arXiv:1809.11096, 2018. 7

[6] C.-C. Chen, C.-L. Yang, and H.-Y. Cheng. Efficient and
robust parallel dnn training through model parallelism on
multi-gpu platform. arXiv preprint arXiv:1809.02839, 2018.
3

[7] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao,
B. Xu, C. Zhang, and Z. Zhang. Mxnet: A flexible and effi-
cient machine learning library for heterogeneous distributed
systems. arXiv preprint arXiv:1512.01274, 2015. 3

[8] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training
deep nets with sublinear memory cost. arXiv preprint
arXiv:1604.06174, 2016. 2

[9] X. Chen, A. Eversole, G. Li, D. Yu, and F. Seide. Pipelined
back-propagation for context-dependent deep neural net-
works. In Thirteenth Annual Conference of the International
Speech Communication Association, 2012. 3

[10] Y. Chen, J. Li, H. Xiao, X. Jin, S. Yan, and J. Feng. Dual path
networks. In Advances in Neural Information Processing
Systems (NIPS), pages 4467–4475, 2017. 8

[11] C.-C. Chiu, T. N. Sainath, Y. Wu, R. Prabhavalkar,
P. Nguyen, Z. Chen, A. Kannan, R. J. Weiss, K. Rao,
E. Gonina, N. Jaitly, B. Li, J. Chorowski, and M. Bacchi-
ani. State-of-the-art speech recognition with sequence-to-
sequence models. 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages
4774–4778, 2018. 1

[12] C. Coleman, D. Kang, D. Narayanan, L. Nardi, T. Zhao,
J. Zhang, P. Bailis, K. Olukotun, C. Re, and M. Za-
haria. Analysis of dawnbench, a time-to-accuracy ma-
chine learning performance benchmark. arXiv preprint
arXiv:1806.01427, 2018. 7

[13] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le.
Autoaugment: Learning augmentation policies from data.
arXiv preprint arXiv:1805.09501, 2018. 8

[14] Y. Cui, Y. Song, C. Sun, A. Howard, and S. Belongie. Large
scale fine-grained categorization and domain-specific trans-
fer learning. In IEEE Conference on Computer Vision and
Pattern Recognition, 2018. 8

[15] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. aurelio Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le,
and A. Y. Ng. Large scale distributed deep networks. In
F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems
25, pages 1223–1231. Curran Associates, Inc., 2012. 2

[16] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database. In
CVPR, pages 248–255. IEEE, 2009. 1

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert:
Pre-training of deep bidirectional transformers for language
understanding. arXiv preprint arXiv:1810.04805, 2018. 1, 7

[18] T. DeVries and G. W. Taylor. Improved regularization of
convolutional neural networks with cutout. arXiv preprint
arXiv:1708.04552, 2017. 7

[19] R. Girshick. Fast r-cnn. In International Conference on Com-
puter Vision, pages 1440–1448, 2015. 7

[20] P. Goyal, P. Dollár, R. Girshick, P. Noordhuis,
L. Wesolowski, A. Kyrola, A. Tulloch, Y. Jia, and K. He.
Accurate, large minibatch sgd: training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017. 9

[21] A. Griewank and A. Walther. Algorithm 799: revolve: an
implementation of checkpointing for the reverse or adjoint
mode of computational differentiation. ACM Transactions
on Mathematical Software (TOMS), 26(1):19–45, 2000. 2

[22] A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri,
N. Devanur, G. Ganger, and P. Gibbons. Pipedream: Fast
and efficient pipeline parallel dnn training. arXiv preprint
arXiv:1806.03377, 2018. 3

[23] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in
deep residual networks. In European conference on com-
puter vision, pages 630–645. Springer, 2016. 1, 2

[24] J. Hu, L. Shen, and G. Sun. Squeeze-and-excitation net-
works. CVPR, 2018. 1, 8

[25] S. Ioffe and C. Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
ICML, 2015. 4

[26] X. Jia, S. Song, W. He, Y. Wang, H. Rong, F. Zhou, L. Xie,
Z. Guo, Y. Yang, L. Yu, et al. Highly scalable deep learning
training system with mixed-precision: Training imagenet in
four minutes. arXiv preprint arXiv:1807.11205, 2018. 9

[27] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. In Proceed-
ings of the 22nd ACM international conference on Multime-
dia, pages 675–678. ACM, 2014. 3

[28] S. Kornblith, J. Shlens, and Q. V. Le. Do better imagenet
models transfer better? CoRR, abs/1805.08974, 2018. 7

[29] J. Krause, J. Deng, M. Stark, and L. Fei-Fei. Collecting a
large-scale dataset of fine-grained cars. In Second Workshop
on Fine-Grained Visual Categorization (FGVC2), 2013. 7

[30] A. Krizhevsky. One weird trick for parallelizing convo-
lutional neural networks. arXiv preprint arXiv:1404.5997,
2014. 3

[31] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Computer Science Department,
University of Toronto, Tech. Rep, 2009. 7

[32] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction
to parallel computing: design and analysis of algorithms,
volume 400. Benjamin/Cummings Redwood City, 1994. 3

[33] S. Lee, J. K. Kim, X. Zheng, Q. Ho, G. A. Gibson, and E. P.
Xing. On model parallelization and scheduling strategies for
distributed machine learning. In Advances in neural infor-
mation processing systems, pages 2834–2842, 2014. 3

[34] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed,
V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling
distributed machine learning with the parameter server. In
OSDI, volume 14, pages 583–598, 2014. 3

[35] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri,
Y. Li, A. Bharambe, and L. van der Maaten. Exploring the
limits of weakly supervised pretraining. ECCV, 2018. 2, 8

[36] S. Maji, E. Rahtu, J. Kannala, M. B. Blaschko, and
A. Vedaldi. Fine-grained visual classification of aircraft.
CoRR, abs/1306.5151, 2013. 7

[37] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen,
D. Garcia, B. Ginsburg, M. Houston, O. Kuchaev,
G. Venkatesh, et al. Mixed precision training. ICLR, 2018. 7

[38] J. Ngiam, D. Peng, V. Vasudevan, S. Kornblith, Q. Le, and
R. Pang. Domain adaptive transfer learning. 2018. 8

[39] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. V. Jawahar.
Cats and dogs. In IEEE Conference on Computer Vision and
Pattern Recognition, pages 3498–3505, 2012. 7

[40] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. De-
Vito, Z. Lin, A. Desmaison, L. Antiga, and A. Lerer. Auto-
matic differentiation in pytorch. 2017. 3

[41] C. Peng, T. Xiao, Z. Li, Y. Jiang, X. Zhang, K. Jia, G. Yu, and
J. Sun. Megdet: A large mini-batch object detector. CVPR,
7, 2017. 4

[42] Y. Peng, X. He, and J. Zhao. Object-part attention model
for fine-grained image classification. IEEE Transactions on
Image Processing, 27(3):1487–1500, 2018. 8

[43] A. Petrowski, G. Dreyfus, and C. Girault. Performance anal-
ysis of a pipelined backpropagation parallel algorithm. IEEE
Transactions on Neural Networks, 4(6):970–981, Nov 1993.
3

[44] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson.
Cnn features off-the-shelf: An astounding baseline for recog-
nition. In IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 512–519, 2014. 7

[45] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le. Regular-
ized evolution for image classifier architecture search. arXiv
preprint arXiv:1802.01548, 2018. 1, 7

[46] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional
networks for semantic segmentation. IEEE Trans. Pattern
Anal. Mach. Intell., 39(4):640–651, 2017. 7

[47] C. Sun, A. Shrivastava, S. Singh, and A. Gupta. Revisiting
unreasonable effectiveness of data in deep learning era. In
Computer Vision (ICCV), 2017 IEEE International Confer-
ence on, pages 843–852. IEEE, 2017. 2, 8

[48] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
Inception-v4, inception-resnet and the impact of residual
connections on learning. In AAAI, 2017. 8

[49] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.
Going deeper with convolutions. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 1–9, 2015. 1

[50] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna.
Rethinking the inception architecture for computer vision. In
CVPR, pages 2818–2826, 2016. 1

[51] L. G. Valiant. A bridging model for parallel computation.
Communications of the ACM, 33(8):103–111, 1990. 2, 3

[52] X.-S. Wei, C.-W. Xie, J. Wu, and C. Shen. Mask-cnn: Lo-
calizing parts and selecting descriptors for fine-grained bird
species categorization. Pattern Recognition, 76:704–714,
2018. 8

[53] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, et al.

Google’s neural machine translation system: Bridging the
gap between human and machine translation. Transactions
of the Association for Computational Linguistics,, 2017. 3

[54] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He. Aggregated
residual transformations for deep neural networks. In Com-
puter Vision and Pattern Recognition (CVPR), 2017 IEEE
Conference on, pages 5987–5995. IEEE, 2017. 1, 8

[55] F. Yu, D. Wang, and T. Darrell. Deep layer aggregation. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion 2018, 2018. 8

[56] X. Zhang, Z. Li, C. C. Loy, and D. Lin. Polynet: A pursuit of
structural diversity in very deep networks. In CVPR, pages
3900–3908. IEEE, 2017. 8

[57] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le. Learn-
ing transferable architectures for scalable image recognition.
CVPR, 2018. 1, 7

