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Abstract

We have developed DeepSolar, a deep learning framework that analyzes satellite
imagery to identify the GPS locations and sizes of solar photovoltaic (PV) panels.
Leveraging its high accuracy and scalability, we constructed a comprehensive high-
fidelity solar deployment database for the contiguous U.S. We demonstrated its
value by discovering that residential solar deployment density peaks at a population
density of 1000 capita/mile2, increases with annual household income asymptoting
at ∼$150K, and has an inverse correlation with the Gini index representing income
inequality. We uncovered a solar radiation threshold (4.5 kWh/m2/day) above
which the solar deployment is “triggered”. Furthermore, we built an accurate
machine learning-based predictive model to estimate the solar deployment density
at the census-tract level. We offer DeepSolar database as a publicly-available
resource for researchers, utilities, solar developers and policymakers to further
uncover solar deployment patterns, build comprehensive economic and behavioral
models, and ultimately support the adoption and management of solar electricity.

1 Introduction

Deployment of solar photovoltaics (PV) is accelerating worldwide due to rapidly reducing costs and
significant environmental benefits compared to electricity generation based on fossil fuels [Haegel
et al., 2017]. Because of their decentralized and intermittent nature, cost-effective integration of solar
panels on existing electricity grids is becoming increasingly challenging [Chu and Majumdar, 2012,
Agnew and Dargusch, 2015]. What is critically needed and currently unavailable is a comprehensive
high-fidelity database of the precise locations and sizes of all solar installations. Recent attempts such
as the Open PV Project [NREL] rely on voluntary surveys and self-reports. While they have been
quite impactful in our understanding of solar deployment, they run the risk of being incomplete and
with no guarantee on absence of duplication. Furthermore, with the rapid pace of solar deployment,
such a database could become outdated. Machine learning combined with satellite imagery can
be utilized to overcome the shortcoming of surveys [Jean et al., 2016]. The availability of satellite
imagery with spatial resolution less than 30 cm for the majority of the U.S., which is annually updated,
offers a rich data source for solar installation detection based on machine learning. Existing pixel-wise
machine learning methods [Malof et al., 2016a, Yuan et al., 2016] suffer from poor computational
efficiency, and relatively low precision and recall (cannot reach 85% simultaneously), while existing
image-wise approach [Malof et al., 2016b] cannot provide system size or shape information. Google
Inc.’s Project Sunroof utilizes a proprietary machine learning approach to report locations without
any size information. They have so far identified much less number of systems (0.67 million) than in
the Open PV database (∼1 million) in the contiguous U.S.
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Leveraging the development of convolutional neural networks (CNNs) [LeCun et al., 2015] and
large-scale labeled image datasets [Deng et al., 2009] for automatic image classification and semantic
segmentation [Krizhevsky et al., 2012], here we present an efficient and accurate deep learning frame-
work called DeepSolar that uses satellite imagery to create a comprehensive high-fidelity database
(which we called DeepSolar database) containing the GPS locations and sizes of solar installations
in the contiguous U.S. To demonstrate the value of DeepSolar, we correlate environmental and
socioeconomic factors with solar deployment data and have uncovered interesting trends with these
factors. We utilize these insights to build SolarForest, the first high-accuracy machine learning
predictive model that can estimate solar deployment density at the census tract level utilizing local
environmental and socioeconomic features as input. We offer DeepSolar as a publicly-available
database that enables researchers to extract further insights about solar adoption, and aids policymak-
ers to get deeper understanding and insights about socioeconomic and environmental correlations and
causations. The DeepSolar database closes a significant gap for the research and policy community,
while at the same time advances methods in semi-supervised deep learning on satellite data and solar
deployment modeling. More details can be found in full paper accepted by Joule Magazine.

2 Results

2.1 Scalable Deep Learning Model for Solar Panel Identification

Generating a national solar installation database from satellite images requires a method that can
learn to accurately identify panel location and size from very limited and expensive-to-obtain labeled
imagery, while being computationally efficient to run at a nationwide scale. We developed DeepSolar,
a novel semi-supervised deep learning framework featuring computational efficiency, high accuracy
and label-free training for size estimation. Traditionally, training a CNN to classify images requires
massive training samples with true image-level class labels, while training it to segment objects
requires large training set with ground truth pixel-wise segmentation annotations, which are extremely
expensive to construct. Furthermore, fully-supervised segmentation has relatively poor computation
efficiency [Malof et al., 2016a, Yuan et al., 2016]. To enable efficient solar panel identification and
segmentation, DeepSolar first utilizes transfer learning [Pan et al., 2010] to train a CNN classifier on
366,467 images sampled from over 50 cities/towns across the U.S. with merely image-level labels
indicating presence or absence of panels. Segmentation capability is then enabled by adding an
additional CNN branch directly connected to the intermediate layers of the classifier, which is trained
on the same dataset to greedily extract visual features to generate clear boundaries of solar panels
without any supervision of actual panel outlines. Such a “greedy layer-wise training” technique
greatly enhances the semi-supervised segmentation capability, making its performance comparable to
fully-supervised methods. The output of this network is an activation map that involves a threshold to
produce panel outlines. Segmentation is not applied on samples predicted to contain no panel, greatly
enhancing the computation efficiency.

The performance of our model is evaluated on a test set containing 93,500 randomly-sampled images
across the U.S. We utilize precision (rate of correct decisions among all positive decisions) and
recall (ratio of correct decisions among all positive samples) to measure classification performance.
DeepSolar achieves a precision of 93.1% with a recall of 88.5% in residential areas and a precision
of 93.7% with a recall of 90.5% in non-residential areas. Such a result is significantly higher than
previous reports [Malof et al., 2016a, Yuan et al., 2016, Malof et al., 2016b,c]. Furthermore, our
performance evaluation guarantees far more robustness since their test sets were only obtained from
one or two cities but ours are sampled from nationwide imagery. Mean relative error (MRE), the
area-weighted relative error, is used to measure size estimation performance. The MRE is 3.0% for
residential areas and 2.1% for non-residential areas for DeepSolar. The errors are independent and
nearly unbiased so MRE decreases even further when measured over larger regions.

2.2 Nationwide Solar Installation Database

DeepSolar was used to scan within a month over one billion image tiles covering all urban areas as
well as locations with reasonable nighttime lights to construct the first complete solar installation
profile of the contiguous U.S. with exact locations and sizes of solar panels. The number of detected
solar systems in the contiguous U.S. is (1.4702±0.0007) million, which exceeds the 1.02 million
installations without accurate location in Open PV [NREL] and the 0.67 million installations without
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Figure 1: Solar resource density (solar panel area per unit area (m2/mile2) at state, county, and
census tract levels, with examples of detected solar panels Darker colors represent higher solar
resource density. Several census tracts in Hudson County, NJ have solar resource density higher than
30,000 m2/mile2 while the five northern states (MT, ID, WY, ND, SD) have solar resource density less
than 1.34 m2/mile2, indicating extremely heterogeneous spatial distributions. The red-line rectangles
denote the predicted bounding boxes of solar power systems in image tiles and the values denote the
estimated area of solar systems.

size information in Project Sunroof. In our detected installation profile, a solar system is a set of solar
panels on top of a building, or at a single location such as solar farm. We built a complete resource
density map in the contiguous U.S. from state level to household level (Fig. 1). Solar installation
densities have dramatic variability at state (e.g., 1.34 to 224.1 m2/mile2) and county levels (e.g., 255
to 7490 m2/mile2 in CA). 23.4% of the census tracts contain 90% of the residential-scale installations.

2.3 Correlation between Solar Deployment and Environmental/Socioeconomic Factors

We correlate the residential solar deployment with environmental factors such as solar radiation and
socioeconomic factors from U.S. census data to uncover solar deployment trends. We also collect and
consider possible financial indicators reflecting the cumulative effects of energy policies, including
the average electricity retail rate over the past 5 years, number of years since the start of net metering
and other types of financial incentives.

Results show that solar deployment density sharply increases when solar radiation is above 4.5-5
kWh/m2/d, which we define as an “activation” threshold triggering the increase of solar deployment.
Since significant variation of solar deployment density is observed with solar radiation, we split
all tracts into three groups according to the radiation levels (low, medium, high), and analyze the
trends with other factors based on such grouping. Population/housing density has been observed to
be positively [Schaffer and Brun, 2015] or negatively [Kwan, 2012, Crago et al., 2014] correlated
with solar deployment. Fig. 2a shows that both trends hold but with a peak deployment density at
the population density of 1000 capita/mile2. Annual household income is a substantial driver for
solar deployment (Fig. 2b). Low- and medium-income households have low deployment densities
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Figure 2: Residential solar deployment density correlates with socioeconomic factors condi-
tional on radiation Census tracts are grouped according to 64 bins of the target factor. Curves are
fitted utilizing LOWESS. Blue/green/brown label denotes the census tract and its affiliated county
corresponding to the median value in the bin. Here we only show tracts with high solar radiation
(>5.0 kWh/m2/d). A. Solar deployment density increases with population density with a peak at
1000 capita/mi2. B. Solar deployment density increases with average annual household income but
saturates at incomes of $150k. C. Solar deployment density increases with the average years of
education. D. Solar deployment density decreases with income inequality in a tract and a critical Gini
index of 0.4 saturates solar deployment.

despite solar systems being profitable for high radiation rates, indicating that the lack of financial
capability of covering the upfront cost is likely a major burden of solar deployment. Surprisingly, we
observe the solar deployment in high-radiation regions saturates at annual household incomes higher
than $150,000 indicating other limiting factors. Solar deployment density rate also shows increasing
trend with average education level (Fig. 2c). However, if conditioning on income, this trend actually
does not hold in regions with high radiation, but still holds in the regions with poor solar radiation
and lower income level. Moreover, solar deployment density in census tracts with high radiation is
strongly correlated and decreasing with the Gini index, a measure of income inequality (Fig. 2d).
Additional trends that illustrate racial and cultural disparities, for example, can be extracted utilizing
this database. We expect that routinely updating the DeepSolar large-scale database and making it
publicly-available can empower the community to uncover further insights.

2.4 Predictive Solar Deployment Model

Models that estimate deployments from socioeconomic and environmental variables are key for
decision making by regulatory agencies, solar installers and utilities. Studies have focused on either
utilizing surveys (e.g., [Vasseur and Kemp, 2015]) or data driven approaches (e.g., [De Groote et al.,
2016]), achieving in-sample R2 between 0.04 and 0.71. The models are typically linear or log-linear
and utilize less than 10,000 samples for regression. Our result instead reveals that socioeconomic
trends are highly nonlinear. Therefore, we build an Random-Forest-based model, called SolarForest,
to estimate solar deployment at census tract level utilizing the data from more than 70,000 census
tracts, which achieves the tier-1 out-of-sample R2 of 0.72 in the ten-fold cross validation, higher than
the in-sample R2s of any other models in previous works.
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